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SSUMMARY.

G pThe state of art concerning 'models-for-recal and recognition S reviewed. A

distinction: is ,made hetwe~i netwo0rk ni~olels; !seach", or" sep)arate. ftace,-models,
and composite/distributed, iiemory modeisi The, models, ,ae :dompared: on' a,
number of aspects, such as: whether they, are !based on separate or composite
traces, de nature-of the, memory representation, context dependency, etc.
Following this review, a comparison, is made with respect to the ability to predict
basic findings in memory research. The report concludes with a discussion of the '
advantages and disadvantages of quantitative models of mnemory,.
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Modellen -voor heri rn nhrenn

SAMENVA'T-ING

Etr wordt pen, overzicht, gepreseniteerd van, de-stand van, zken mnet betrekking tot
modellen voor hernnering en herkenining. Er woridt een onderscheid ,gemiAak
tussen netwrkilnodellen, zoekmiodellen, en -modellen mhet. een gedistribuede
geh~igdregpsent tie. D6De verschillende :moindellen Worden, op -een 'aanta
aspecten- vergeleken, zoals d& vraag of ze gebaseerd zijn op gescheiden dan wel
samengevOegde. geheugensporen, de aard :Van de ghgeepseeone-
afhankelijkheid, e.d."De, mnodellen worden v ervo~gens vergeleken in termen van
de mate waarin zijin, -staat zij ,n- mpir'gisce resultaten te verkiaren. Het rapport
wordt afgesloten- miet, een lbespreking van de %oor- en-nadelen van-het-werken
met, kwantitatief -geformuleerd e modellen voor bet lgeheugen.
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The studyof learing and memoy o is a research 'Areaathathas: been driven by! :fi ~ ~mdelgs'sce :at !least! the: .1940'.: .Over ,the years ,-the: emphasis in mathematical

,t)

meloliihs shifteJromve ,precise,, tt ig o single,,pe rints y 0wa
mightinbe btwee d em i-uantitatice. iti. awide varentyofphe"' fn
ena fr anmbr 'froof expe eamnta ram (mpae fhor is ton P Baeers,
o6ne-element. mo~del (Bwer 1961w- toayo hcUreit-models, such as ,AC'.F
[Anderson, '193b, 'SAM ['Pjaes& hfrn 91 Gilund Sbiffrn,
19841, or TODA [Murdock, 1982]). .

Th'e comrplexities of recent-models" contributes. -to the a pparentimnp'o-ssibility,'of,
deciding between- them. Although .co-ichdd: in, quite' different -terms,, they- ofteni.
make very similar predictions,, at least underappropriate, choices, of -parameters.
Thismakesit, difficult togenerate critical empirical;tests,-O:x-the, other hind, the,
similarity of predictions. suggests. realprogress 'in theorfydevelopment, ,,forced by,

. the -necessity.t0,oacc6unt ,foir a standardand..agreed ,upon coripusi-of-findings..

In :this -chapter, we will, review ,a :number of the most, important contemporary
models-of-memory, tryingto .'highlight-the similarities and'.differences in ,the way-
they handle basic .facts, about recall and recog'tion. Space limitations p- event us
from,, any attempt, at exhaustive coverage. For the, same reason, although: a,
number of models-;canor do predic t:response latencies,:We leave coverage of this
important topic, toa, future chapter,

2 THEORETICAL APPROACHES

Although any-type of classification is bound- to be 'unsatisfactory, wewill use :a
classification of current-models in three basic- categories:. i) separate trace
models involving spreading activation, ,or making no explicit ;activation.assump-
tions; ,we term these- network models; 2) separate trace models-.involving parallel
activation, termed search or episodic -trace models;-and' 3) composite/distributed
memory models.

2.1 Netwirk- models

Network models propose that long-term memory consists of a -set of nodes -and.
links connecting the nodes. The nodes represent concepts or cognitive units
(Anderson, 1983ab) and the n semantic or episodic -relations. Whenever two
items are studied together, a link bet-wveen -the, nodes.representing_.these items
may be formed. In most of' these- models, a process of spreading activation-
determines the -retrieVal of information -from. memory. Basically, -there are two

alaru



'1type'f netbrk :od& 10' the. altr.doe t
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, ~The" all-or-none actvtion',mod el: 'assumes 'that -net~ork' fnodes d-are, :either/:acti ve,

or,,.inactive,. The best 'known, exmle isth e,,A AC,'I m rodelF.proposeb AndersdO
-i176.nnschamdel,. the: spreadi Ing of ,ativationi is-, determfined b',y ,the

(relative) strengh .of the nodes orthe, links.,Suppose that.two nodes,. and i
Sare connected by, a I .If nodeX:,is afcltivte pro. .babilty:of acvatig Y in

the next, unit o0f time. is a ,functin: of s/S;, the relative :strength o ;f the, linmk I

compared to all other links emanating ftom X, or, alternavy the: relative
strength of node Y'compared to all other nodes -linked toX.In such a model, the
probability offretrieving;,Y given-. that, Xis active, isequal-to the.likelihood ,that- Y
is activated before a .,specifiedcutoff ,time.

A, continuous. activation. model. ,was, developed; .by;' Anderson, (1983a,b)' 'as an
alternative ,to.:the all-or-none :model. The :ba-sic diffence, isthat network, nodes

now have a, continuously vaiying.activationstrength, This : means 'that one..needs: a,,

different rule for determining Whether a memory trace has -been successfly
retrieved; If -a, stimulus.node, X hAs an associative 'lifnk-to another,-node Y, -some:
activation will'spread fromX to,'Y. The amount of:activation of: Yis.determined-
by, therelative strengthof the :link between X andsY (compared tO.,dl other links'
fromX). 'Insucha. model it becomes more:natural:to assume,that the probability
and' latency- ofretrieving the trace Yare a function of the' amountof activationi
of Y. Thus, the notion of spreading activation ,has changed from. gradually
activating connected nodes (i.e., distant nodes take longer to activate) to a
dynamic model in which the activation spreads rapidly over the network but in
varying degrees (i.e., distant nodes, have a lower level of activation).

As an example, in the most recent version of Anderson's ACT theory, the ACT*
inodel (Anderson, 1983b), 'it is 'assumed that, during storage memory traces
(called cognitive units), are formed. Traces vary' in strength (a function of the
number of presentations and the 'retention interval), and these strengths deter-
mine the amount of activation that. conveges the trace from associated nodes
(thus, in this model, it isrelative node strength, not link strength that determines,
the flow of activation; it is not evident whether this makes a difference). Thus, in
a paired-associate recall situation, where the subject learns a list of pairs A-B, it
is assumed that the trace (the cognitive' unit) encodes the information that this
pair was presented in this context. At test, the response will, be retrieved if (a)
such a trace has indeed been formed, and (b) it can be retrieved within the
cutoff time.

2.2 Episodictrace models

The basic characteristic of episodic trace models is that they assume a set of

separately stored memory traces that are activated in parallel. Such models are
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The AM ,ode: 'as~mS: :hat Wdrm'str~, Cj'2ta at on on, ep otesee  i,
trce.ms.b.'oud a upt.. s On' sucass of, mdoe a, all of nma

ta.The , bam st kn' Of nf xamleo of such a: m del ther Search ofy Assi~ociative

ampingt pnability of aparticul enre
strength,,of thati trace-cmae tol te.mmr rces.,

The AM odel asumesthadurng torage,-idbormatibnhs -re,,jpresentedin,
!memoryiae ,wih oti itemasctiendotxul ifrain.
STe.uamos'tunt adtypefinfmationtor isdetermined 'by cod ' processesin
STfS.In, o.st '(tentiofal)mleaing d thepardims tdamdt of inr'macistored
is afunction the lengthof .. time that Iheem is stUdied wi e intS. Accord-
ingl' to the SAM-',model, retrieval- from, LTS ,is ,,based on cues ,(conteoxt,items,
category names)., Whether an image is retrieved- ..or not, depends, on- the,
associative strengths -of-the retrieval 'cues to that image. These strengths are a

I functiomwof the overlap ,of -the cue', itf6rmation and- theinf6rmatinstOred, in the
image;

An important- property of the 'SAM' model- is, .that it incorporates 'a rule to
describe ,the overall, strength of a .set of probe cues to a particular image: the
overall' activation strength (A(i)) is, eqUaI to, product of the individual cue
strengths (weighted if necessary for relative salience 'or importance). This
multiplicative feature focuseS the search process on those images that are,
strongly associated to:a/llcues.,

In recall tasks, the search process of the' SAM model is based on a series of
elementary retrieval attempts. Each attempt involves, selecting or sampling one
image ,based on the relative activation strengths. Sampling an 'image allows.
recovery of jnformation from it. For simple recall tasks, the probability of
successfully recoveringi the name of the encoded word. is, assumed' to be a 1simple
function offtheweightedstrengihs.

Although the SiM model :assumes-that the process of activating information is
basically the same in recall and recognition, there are some important differ-
ences between these, two, processes. It is assumed that recognition does not
necesar'ly involve sequential sampling but is (mostly) based on a direct access
process involving 'a' single retrieval step (Gillund and Shiffrin, 1984,,p. 55-56).
The recognition decision in ,this direct access 'process is -based on the sum
(EA(k)) of. the activation, strengths; if the 'same cues are used&to probe memory
for recall and recognition, the- activations, are.'the same in 'both cases, though,
used ,in different ways. As we shall see,, the process of summing -activations
makes the SAM model. for recognition remarkably similar in structure to models.
that appear quite different on 'the surface, even- 'models that sum- inputs at
storage, rather than retrieval'(like most composite, distributed models).
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tew n-of Fthe,, tr eor ,iZd-el-t-, vff r SAu Ii

incorraftess specific vaiance..assumptions; in,1,parffcla ;,the :standard deito
; .6~f the distrbu tion of, a given strenlgth isr assumted to: be proportional to, ehrmean

strngh alu (ilun & bifrn,1984 Shiffrin,Ratciff, &'ak 90).

The' SA model assumes' ,that fo' typic episodic-memory.ask, contexta
information is §lways encodedin ,:the memo ,mry imge,.,ad contextis one of th:e
retrieval cues.,-Mensink and Raaijmakers (1988,. 1989),prposedAn.aextension-,of
the SAM model to handle-time-de6pef.dent-changes incontext. The1 basic idea,
adapted from' Stiul us Sampling Theory(Estes ,1955is that a rladom fluctu.

ation of elements occurs between t, sets, a set-of,..avail" able context elements:
and, a "set of (temporarity), unav.ailable context, elements.. -Performance is; a,
finction of the'relationship between setsof avalabl6e elements at different -pits
in 'time (vji, study and test'trials).

Hintzman, (1986,, 1988) deeloped ,a modelz for episodic memory that- bears.
similarities to Gillund and' Shiffrins SAM model for recognition. This model,
MINERVA. 2, has .been- applied -primarily- to category iearning and..recognition
memory. It isassumed that each ,experience produces a separate memory trace..
Both-'items and memory traces&are represented. as lists. of features or vectors, In
simulations of:the emodel, it has'.been assumd that: each feature is independently,
encoded with probability .L, a learning rate parameter. When a probe ;cue is
presented, all. memory traces are activated-:in, parallel. The amount of activation'
of any particular trace is a nonlinear function of the similarity to the probe cue. 4

As in the SAM model, recognition perforniance depends on a single value, the
summed activation of all traces. In order to allow recall to becarried out, the
model also stipulates that.a vector 'is retrieved. This vector (called -the'echo) is,
the sum of:all'trace vectors, each weighted by its activation value. Because of the
weighting, and, the nonlinear activation rule, the echo will contain a dispropor-
tionate representation of those traces similar to the memory probe. ThUs, if part
of trace j is used a a probe, the echo will contain a strong representation from
the entire trace j. For example, if a trace encodes a studied pair A-B, and A is
used~as a p.be, the ,echowill'contain something similar -to A-B, allowing B to be
recalled. Of. course, the. retrieved, trace is actually a composite of many traces
(unlike theSAM model), so some mechanism is: needed, to extract some particu-
lar item from the composite -- Hintiman (1986, 1988) discusses.several possibil-
ities, such as comparing the echoto' the ,stored traces, or repeating the: retrieval
process. several times, 'each time using the retrieved-echo as a probe, until the
echo achieves a 'stable value (usually matchingsome storedtrace). In any' event,
one 'basic difference between SAM and. MINERVA 2 is. that the latter model
assumes 'that in .recall a kind of composite memory, trace is retrieved (at least
initially), whereas the SAM model for recall 'holds that. a specific memory trace
is sampled (initially, though'different traces may be sampled subsequently).



In rcen yerscomposie/dstrbute meoryino e ;, ae enjoe q a 4 rapidlygrowin puaFity. (For additional-discussidniwe referth-e reader toi a, eeiit'

-chapter" in nnalRwd e by. H.intan 1Tese mOdelsfadlJnW . inworlatedd
but~ ~ ~ ~ q soehtdfern lse.;one,.clas itnsare represented by vects(a

in MINERVA v2) =matrcs f elentyfeaturs and the.memoycnsists of

a sum of the tos ,r- matrices (e.g.TODAM [Mudck 1982, CHAR[Metcale Eich, :1982;: 1985], James 'Anderson;,.vec¢t +model (iAn..derson; ,1973], +

the Matrixniodel (Pike, 1984; K vHumphreysBi,.& Pike, d989];-Kerv s, SDM

model [KAnera !988] fallspartwa between. ,is class andt,,,hesepate storage,
class, of. the previous section).: Inthe second classmemory n csists of-;nodes,
connected by' weighted-l; items -are, repqseted- by, a, pattern .or set of:

ctv-and long-term.memoryconsists of t hevalues. ofthe
weihts ,on, the. links (e.g., ,Grssberg's .ART -model [Grssberg,, 1987;. Grossberg
&-Stone, 1986]:, JameS: :Anderson's :BSB-model' [J.A. Anderson et al, '1977];, orI any of the..feedforward' backpropagation models, McClelland and Rumelhart's,
recurrent model).

The-basicdifference between suchAmodels. and the models :discussedpreviously-s isI
that composite/distributed memory mdels- assume 'that:,a memory trace is ,,not ,:a

distinct, localized entity ".but rather ,partofa, combination or <superimposition, of'
all traces inputto. thesystem. It +isthis aspect'that 'has made many. ,of these
models' seem .both ,mysterious -to 'the' novice: (who wonders: how memory can +be
asgoodas;it is), andattractiveto m any expertsg (who can. explain, why memory is
as bad as it is, and how We can, extract .averages and' prototypes. from inputs, and'
who like the analogy to neuronal structures).

These composite/distributed storage assumptions can serve as, a basis for, a,
memory model because. for each version there, exists an,, appropriate retrieval
operation. 'In- some cases, the cue will retriever a 'noisy version of 'the, original
trace containing, that cue; in other cases the +cue. wil retrieve a .noisy- version of
an item originally stored as an associate -of, the ,cue; .in yet other ,cases .the
retrieval may be a clearly definable response, but with a type -of noise determin-
ing the Probability "of reaching sucha state, and:, determining, whether the state,
would be, the correctone. The retrieved information can be matched,.against the
input to perform ,recognition,6Or if necessary-can.be: 'cleaned up" in 'some.-fashion
to,allow a response to be, emitted.

As an example, consider one versionzof the, Matrix modelproposed by,Anderson
et: al. (1977; terrAed BSB for 'brain state in'%a box')., Whenever two +items, (f, A-)
are -assoCiated,.a matrix., A1.is produced-with- cell elements A(r,s)= f(r)&(s).'The
composite memory (M) consists of the sum of all such association matrices,M = ~~ A. Ignoring for simplicity the details of the nodeactivation process (such
as its nonlinear limitations on- activation growth), the retrieval of'an associate
(g,) given a cue item (f1) can be obtainedby postmultiplying M with f.: the :result,
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AMis noisy composite of tuose vectors at ..A.. e.s..t.iwd ' m-' r aqd
ite sar ( se e a ,1977,p.417) Although thismodel isn
forrulatede if l 4or paired-assoate , re a, simp if qation will
handle recogntion.A memorY 'The -,basic idei-is 'that recogm* v

item. ,Inr,:Je~r: :fo stoworkit: mast be-assumed .!tat th,.memoryt race,
!ncludesotliO*yassoative inPformaton 1ut also'item infortion.

Atoug ,weaveignored e,. short-term activaibon features of,, theBSB. ,,model,.
it is amemberotour-,secofid'class. We e- gin our discussion,ofe, fitirst class with,
a model- cloly .related to Andersonsbutiwitout . a _7tnproceSs,(ad
its nonlinearlimit .on activation- values). ,Thi is the Matrixmodel ,proposed byPike ( 1984; see also Humphr eys, BRain,, and; .Pike, 1989,, and Hump hrey , Pike,.
Bain, & Tehan,. ,1989)..Associations of item-vectors are represented- by,-r.ices
tofo.hna:composte ,memory matrix. In recent versions of this model, context-to-
-item associations, shave been ihcorporatd .in, the -matrix: 'model: .in, order to
account for the, faUt, that memory of a t0-be-memofized ist -is ;to, some extent
"isolated" from all other memories. Thus, instead of'stOring a two-wayassociation-
between the members of a paired associate, a. three-way association between the
two items,, and the,, contektAss stored,-(inthe form.of a 3-dimerisional ,matrix).. In
order to retrieve , & the memory matrix.(M):"is, multiplied,-in. a, specific way, (see
Humphreys et al.,.1989) with the matrix obtainedbymultiplication of 'the context
(x)0and ,item (f1) vectors. Thelatter product-defines the "interactive" retrieval'cue
representing the association of context:and, stimulus item.. This incorporation of
contextual, associations 'makes it possible ;to distinguish: between ,episodic
(list-specific):and semantic,(preexiSting) associations.

Related models have been proposed by Murdock (1982) and Metcalfe Eich
(1982; 1985; see also, Metcalfe & Murdock, 1981). In, both Murdocks Theory -of
Distributed Associative Memory (TODAM). and Metcalfe' Composite Holo-
graphic Associative, Recall Model (CHARM), the associative encoding -and,
retrieval operations are the -mathematical :operations of convolution,.and correla-
tion, respectively, (see Metcalfe Eich, 1982,. 1985)..

The, TODAM- model, assumes that' when each, association A-B is studied, the
vectors representing A: and.B, and the convolution vector representing A-B, are
all added to a slightly decayed version of the' single: composite rmemory;,vector
that contains- all- of episodic memory. In this model-,recognition-involves 'match-
ing the to-be-reCognized item vector to the memory vector (i.e., taking the dot
product) and fusing -the, ,esulting scalar number as a measure of familiarity.
Recall starts bycorrelating the,, cue item vector with the memory trace,. producing
a, noisy vector containing, components representing versions.,of all Jitems associ-

1 The term "holographic" refers to the- analogy !etween the properties of human associative

memory and those of h1ograms (Pribram, Nu4wer, &.Baron, 1974; Willshaw, 1981), in particular
their resistance to 1ocadaiage and'tbe associative properties.



ated to thie cue.vector dunng stuMy.Thenosy vector ust then,' clean oupto
produce aresponse. (sayb oprn the rte&* ripdetrt fo eAately
stredvectors peening it nsemanticemory).

Rather 'tfanstre vectors, C R ca inv
,donvectos for .each. si g.e item these, areSor d- aln. wt- t, e eonvoutio

vecto forthe ssocation Forall tudi~pai sp,e cors-are, summled inta
single composite memory- vcor. Theretrievaloperationi correlation- as in

TODAM h CHARM, a prbe'w-ith A rextrieves ,a copsitenis erinofal
'items convoluted4ith A, incud n -A itself,.so,.that ite 4,and' assoc"atve-infoma-
tic are not independently retrieved '(as tey h e n TODAM); Ai uSua- the

trace must be cleaned up to.generate. a respo ste in ,a, -call -task Recognition.
cau'belaccomplished by compariig te ret ieved& vectorto the test vector.

The second' class of composite/distributed model explicitly incorporates pro-
ceSses of node activation (often thought of as short-ierm miemory) as well as
weight modification (the- s*t of weighrieresendting, long-term memory); both
proce, ses typically being nonlinear. The complexities introduced, thave led',most
ivestigators to explore these models in -the:form 6f,.compUt6ersimulations (With
the notable exception of James Anderson'dd Steve Giossbetr g see below).
Such models are often described by the terni'connectionist' or 'neural net'.
Most of the applications have been to earning phenomena, categorization and

4 classification, or perceptual phenomena, but some discussion of applicationis to
memory is useful.

Consider first a representative back-propagation model (Ackley, Hinton, &
Sejndwski; 1985; Rumelhart, Hinton, & Williams, 1986). This model, assumes 'a
3-layer representatibn: a layer of'input, units or network 'nodes, a layer of output
units, and' a middle layer of So-called hidden units. Activation is 'fed from the
input units to the 'hidden units (using a nonlidear transform), and from these to
the output units. All connections between layers ibave weights that determine
how much the activation of a particuiar, say, hidden unit depends on the
activation of a particular input unit. The basic rule of the back-propagation
model is that these weights are adjusted during training in order to optimize the
correspondence between predicted and acual output vectors (the back-propaga-
tion algorithm perforis a kind of least-squares fitting procedure). One can use
such a model to perform recognition .and recall, in a number of Ways; perhaps the
simplest i, to have each input association attempt to reproduce itself at the
outPut layer. 'Then a subsequent test "th an item will tend to produce a noisy
version of the association containing that item at-the output layer. Recognition
can, be accomplished by matchivg, and recall by cleaning up the trace in some
fashion.

It has been shown that thes, networks can represent virtually any computable
mapping from input to output layer (given enough hidden units). However, for
our purposes the important issue is the way in which such a mapping is learned



anidrtiained,--tnder.-aiius coniditions.'lThese aspects, bave--been- considerd,'y

coen(1989)-shed tat intwo-list recltasks the backropa- d

gatio#n mdel -suffer frm"aatohic.frgettg:th secn itlast
.almost.dcmplete forgetting f. i p l wr u b

:Ratcliff,, (1990) who analyzed the, modelsA 'prdiction for cognition mnemory.
'This-, reutiWnestnal fi i elzdta these"' neualnetmdels ,aust

, ~~te coe~nnection ,weightsto fit the most recent timuli,-.. ad tha itS ,sassumed that

the inputs-du 4ingte second-. list are 6f' secohndlist: itemisonly. At the, stat, of
second-list learning,.the Vwiejgh. wJll bcond* optay for the first list.
However, there is no mechanism. the.model that,.wil kee , the weights fiom
obtaining copletely different values .opt g the "re'call ofthe second-list
items. Hence, after 'a few training trials onthe secondlist, the network wi have
"forgotten" the: first. list.items., Ratliff (1990),alsoshowed that this, model faf-to
predict a positive effect.of amount of :learning on the d' measure for recgnition.
(Ratcliff also showed- that seveial related -models, including the auto-associatve
model proposed by MOClelland and:Rumelhart, 1985 ,--seebelow--, failed to
resolve .the. problems.. Reseaich going .on .-at the .time- of this, writing-suggests a
number of new approaches thai might,, work; e.g. Sloman and Rumeihart, in
press; Kruschke, in presS;, Lewandowski , in.presS. Below we shall -discuss, the
ART model -of Grossberg that- deals with thei problem in a rather explicit
fashion).

The backpropagation models are 'feedforward' networks: activation flows only
forward through, the system (the amount of error is in a sense propagated

backwards through the system in order to adjust the weights appropriately,, bt,t
this, should not be confused with ,the flow of activation) , On' the- other 'hand,, a
number of models .are recur.ent; activation. that leaves a node. can be. fed back to
that same node, possibly after flowing through a, number of intermediate nodes,
and the process typically continues until a stable pattern -of activation results.
(The BSB model has this character, though we did not discuss the dynamics of
activation.)

Consider first the McClelland and Rumelhart (1985) model. In brief,, a set of
nodes accepts input from external sources, and, is fully interconnected (except
that nodes do not directly activate themselves) by directionl links having
weights., Activation moves through the system driven by the sum of the external
and internal inputs to a node, until a stable patternJs reached. Then. weights are
adjusted so as to reduce the difference between the internal and external input
to each cell (so that the network will try to reproduce its external inputs).
Recognition can be accomplished by matching an input to the stable pattern of
activation it produces, and recall by cleaning up the same stable pattern in some
fashion.
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F ly cosider the recurrett "ART --models-of Grossberg: (eig. GrOssberg- and
Stone,: 1986, -althUg the original,,mod6s date back before 1970). e will'
describe a greatly. simplified version of te theor .t0give he flavor othe
approach. Memory consists. of a srfies of ordered layers 6f nodes. Congider just
two layers,. with perceptual inputs to layer 1, (and, in general top-down inputs to
layer 2). In addition, Weighted links exist:in o.thdirections between nodesjn'the'
two layers, and activations pass in both directions along these links. Within a
layer,. there may.' also be connections, ,but these ate ,inhibitoty and do, not carry
activations directly. The two layers pass activation rapidly back and-forth until a
stable ,result is achieved. Because of inhibition withinJYaer 2, a single: node will
come to:.be active in this layer, in stable, resonance-With apattern of :activation
on' the nodes in layer 1. The stable. pattern may be used for recognition or recall
inways similar to those we havediscussedalready.

A particularly noteworthy feature of the model is its method for picking the
single active node, in layer 2. The pattern of activations; sent down from this node
to layer 1 is compared withthe patternin layer .If these do not matchwell, the
currently active 'layer 2 node is turned off, the system resets, and a new node in
layer two wins the competition. This continues until, a good match is found, until
a node not yet used as a template for a pattern is found, or until no nodes are
left, in which case all layer 2 nodes become inactive. The result is that different
patterns are assigned new nodes, and new learning does not harm old, learningin
the destructive fashion of other models of this class.

The ,eights on the links. change continuously also, but at a much slower rate
than the activation changes. The upward weight changes are made so as to
reduce the difference between a weight itself and the signal passed upward along
that link. Thus a set of weights leading toa singleactive node comes to correlate
with the activation pattern in the nodes. Also the downward links from the active
node are adjusted to match the activation pattern in the layer 1 nodes, so that
top-down templates of the presented patterns are learned. The weights leading
to and from any one layer 2 node come to encode a set of highly similar
patterns, so that each node in layer 2 can be thought of as a category prototype.
A particularly noteworthy feature ofthis system is the fact that the system can
have a distributed representation at some levels (e.g. level 1) and- a potentially
separate representation at other levels (e g. layer 2).

2.4 Differences and similarities

In this section we will compare the various models on a numbet of important
theoretical dimensions. Although the various approaches that we have con-
sidered are superficially quite different, basic phenomena are often explained in
a similar manner, albeit using different terminologies..This section will focus on
the basic issues concerning the conceptualization of memory processes. This
section will focus on basic issues concerning the conceptualization of memory
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processs.: Thediuin will deavwithissues asif they'.werendependent, btt i#t

isImpo-rtn-ttorememberthat no-oneof' thehy-thesesdiscus sed :below" caabe, {
rig't or wrong in isolation -. each must-be, anal zed int..ihe ,context-of the ,hodel-,
inwhich-it 'is embedded. :

2.4, separate vs composite memorytmces

Thequestion here is',whether the model assumes, that, different.items are .stored
in separate traes or in one -composites memory trace. Whether thisis~a.meaning-
ful theoretical' distinction depends on.:a number of auxili-ayassumptions ,j the
models in question. For example, :Shiffrin 'and Murnaie(in press, ,a) .showed that
an arbitrary numberof events can be storedin a single ,numberon a single link
in a way that allows each event ,to be retrieved Without error. The method is' not
a physically realizable one, however. Plausible composite systems, incorporating
the equivalent of neural noise, all seem to -have at least one testable property:
When the system is -densely composite; then, the storage, of new inputs, or even
the repetitions of old inputs, tends to degrade the, representations of other old
inputs. Ratcliff, Clark, and. Shiffrin (1990) tested this notion empirically and
found that repetitions of some list items did' not reduce recognition performance
for other list items (see also, Murnane and Shiffrin, .1991).

Shiffrin, Ratcliffj and Clark (1990) looked at the implications for extant models.
All then current models were found wanting. They concluded that composite
models dense enough to predict forgetting caused by the composition property
could not predict the findings. They concluded ,that models positing separate
traces had the potential to.predict the results,. and developed a variant of the
SAM model that did so. This variant assumed that repetitions were accumulated
in a single trace (a kind, of local composition hypothesis--see below). It also
incorporated a 'differentiation' hypothesis: Suppose two different items A and B,
were not rehearsed together; if B stored in memory more strongly, then will A
used as a cue will tend to activate-it less.

A more local composition issue concerns whether two separate presentations of
a given item are encoded separately or in the same trace. That is, if an item is
repeated, does the second presentation lead to a strengthening of the originally
formed trace, or will a new trace be formed?

MINERVA 2 assumes that each separate encoding of a single item (repetition)
leads to a separate episodic memory trace, ACI* assumes that repetitions
strengthen a given trace, and the early versions of SAM were somewhat ambigu-
ous about this point. Recently (see Raaijmakers, 1991), the SAM model has
been extended to deal :specifically with the effects of repetition and the spacing
of repetitions. In this version, a kind of study-phase retrieval assumption ;has
been added to the model. That is, on the second presentation an (implicit)
retrieval attempt occurs. If the trace representing the -first presentation is
retrieved, it is assumed that the new information will be added to the "old"
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memorytrace ornerise, a new tace ar e j me.h a'd-tiofrn et at.

(04990) 6 h at assume a strethediace _oeplainth e- lack oalit-strength,
finding ,in recognition. ,This view- gand supr rmastudyby Murnane and.
Shiffri in (1991). The tid to induce sparate storage of a rPeated word by
embedding it in differnt sentence :contexts; hi mnpulation produced the:
expectedpositve t-streng~ieffectin recognition. Evidenceof adifferent sort:

supporting this view arises from a.study by Ros &,,Lndauei (1978). They
showed. that the traditional spacing effect only occurs for the probability of
recalling single, item preserited ,twice dan&d notfor the, probability of recallingi
either, one ,of two- different items each 'presented once. This& -result -seems to
require',that repetitions, of, an~item should ,be .treated~differently .frOmthe case -of,
multiple items, each , presented once, (although - firm-conclusins ,depend On the
details ofeach model).

2.4.2 Representational' isues

We will consider three representational. aspects: (1) the nature 'of 'the informa-
don -.ncodedin the memory trace, (2) whether links between -nemory traces are
assumed, and' (3) the representation of "associative strength".

The models that we 'have considered differ in their assumptions about the
information that is encoded in the memory trace. In the all-or-none activation
model ACTE -of Anderson (1976), storage of a simple pairwise association
involves the formation of a new link between pre-existing network nodes. In the
ACT* model, what is stored is a cognitive unit representing the episodic experi-
ence. It is assumed that such a new network node has associative links with
nodes representing the constituent parts of the item, i.e., (in this case) stimulus,
response, and list context. In ACT, associative strength is represented simply by
the strength of the memory traces. As described above, these strengths deter-
mine the amount of activation that spreads to the trace from associated nodes.

SAM and MINERVA 2 also assume that the trace represents the "episodic
experience,, but are less specific about the exact nature of what is stored. The
original, SAM model focused on the relation between cues and images:
associative relations are represented. by a "retrieval structure" rather than the
more traditional "storage structure". The model does not make use of explicit
associative connections between images, though these are present implicitly in
the following sense: suppose two items are studied together; when oneis used as
a ,cue the retrieval strength to the image of the other is -high. SAM was not
entirely explicit concerning the nature of the "image" though for most verbal
studies an image was based on the individual word. Shiffrin, Murnane, Gronlund,
and Roth (1989) presented evidence that a good deal more flexibility is needed,
and that a sentence is often a single image (and that, under some circumstances,
a pair of words; is.a. single: image), Thus in ,principle, a- pair association could be
stored, in two ways: sepaate images governed by an implicit association -that ,is
represented inthe retrieval structure, or a single combined image.
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MENERVA, 2 asues, thatepisodi -experienesid, andmory traces canbe.
represented as vectors of featue .values.Sincethe nature of these ,featUres,.issJeftunspecified, this,, assumption, does :not reall y pose any restrictions.-It-,is ,nOte-:
worthy th t-MNERVA represent pair , by encoding the'omPonnt vector

back to backo in a single :stored ,vector. hteeis a noieaacti tion' prQcess
during rtrievdthat' lets the system distinguish,whether twostored items are in
the 6sme ordiffere t traces. " , ,

Finally, what about, the, models with composite/distributed representations? The,
nalr sentationis generally a vector or. matand isa composte ofssmil ar

vectors or matrices, (or degraded ofrms of these): stord -f0r ,idvdualitems, and:
pairs. The,question is theway i' which associati6ns, and, single items are handled
during storage. TODAM has item vectors, and convolutions of, item vectors for
associations. Context information could in principle be part of each vector, but in
recent work has been treated as a separate vector. CHARM treats single items
as autoconvolutions, but is otherwise similar to TODAM in most respects. The
Matrix model treats individual item Vectors'separately, and, context as a separate
vector. Single items are stored,as an association matrix made from the item,
context and a unit vector. Pairs, are matrices made from the :product of the two
item vectors and the context vector. One issue left unresolved for these models is
the basis by which some types of information are encoded in a given vector,
while other types are singled out for treatment as, a separate vector. For
example, how would category information be treated? (see Humphreys, Wiles &
Bain, 1991, for one possible solution).

A more general solution to this. problem is possible if the various types of
information, and various items to be associated, are all treated as components of
a single vector, or single pattern of activation across a set of nodes. For example,,
in the McClelland and Rumelhart autoassociative recurrent model, and
Grossberg's ART models, all items to be associated, and related information, are
encoded as a single vector or pattern of activation values sent to a set of nodes.
Anderson's BSB model, and various versions of feedforward backpropagation
models use either of two methods. In one method, similar to those in the
recurrent models just mentioned, items to be associated are encoded together in
a single input vector (for example, the model of, Ackley et al., 1985, tries to
reproduce at the output layer the vector presented to the input layer). All such
models use a pattern completion property to retrieve associates. ,In the second
method, the items to be associated are treated as separate vectors; for example,
the input layer could encode one item and the output layer could encode the
associated item (J.A. Anderson et al., 1977).

2.4.3 Contextual encoding

Any model that is designed to explain data from episodic, memory experiments
must. somehow account for the fact that a, paired associate item such as apple-
engine can be learned despite the presence of strong- competitive semantic associ-
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ations (a/e-p ). -It n seems 1igh -Munlikely that'one or two resentations ofa
.list-would create ,such a .strong ,ass-ication that ,it ,dominatesthi e .pre-, ep erimenta

associations., Thusi-subjcts'are. ableto learndff rent aociativrelationshipsindifferent situations. This- cobtextua de pendence sa- "fundanental ,@ropery. of

episodic memory.

It therefore seems -highly des4iabe. fot a,:model .of- memory tobihve-some -means
of selectively accessing memory traces stored under particular 'temporal or
contextual conditions. -Note -that -a simple recency-baed mechanism will .,not
suffice-subjects can access -infoimation ,ffom-contextually identifiablbperiods<in
the past. To give just.one example,, subjects, are able to access'selectively not. the
list learned' most. :recently-,but, :the, 'list learned prior ,to that (Shiffrin; 1970;
Anderson & Bower, 1972).

Most models incorporate contextual associations as, the means to focus retrieval
processes in episodic memory, either by including -the contextual information in
the memory trace, or'by treating. the contextual information, as a separate item.
Whether this alone will suffice is an open question, For example, ACT* and
MINERVA 2 assume, an additive rule for -combining,-the associative-strength-due
to context and item. Such a rule may not have a sufficiently strong focusing
effect to eliminate strong interference by preexperimental associations. The
multiplicative combination rules used, for -example, in SAM and the Matrix
model are such-that retrieval is focussed.on those traces (or those components of
the composite trace) that are consistent With, the context at test. Even a
multiplicative rule may not,, by itself, be sufficient to focus retrieval properly. For
example, Humphreys et al. (1989) call attention to crossed-associates lists, in
which the subject is asked to learn pairs like doctor-king and queen-nurse.
Versions of the SAM model ,in which individual words (but not pairs) have a
single (semantic) memory- representation would not easily predict the learning
seen in such cases. However, SAM models typically assume that images are
episodic in nature, not semantic.

It should be no surprise that models that do not incorporate context will not fare
well. For example, a model that does not include a way to reduce the effect of
irrelevant associations will have serious problems explaining why the interfering
effect of the number of items on a, single experimental list is not completely
swamped by the millions of previously acquired associations. A-simple forgetting
assumption, i.e., a reduction of strength for previous associations (as in
TODAM), will not do the. job without added assumptions about context: The
strong empirical list-length: effects would require too rapid and massive forget-
ting.

2.4.4 Storage

The issue we focus on here is the predicted effect of increasing study',time for a
list. TODAM, CHARM and the Matrix model provide examples of models in



whichsimply aodiqg-1additioa1copies of each trace, toemorm ay*, no -improve
memry boh he~men ad tanar deiaionofthe retrieived .-siga rise,

198 ~ et al, 1990)-. At -least- two a';pproaches- ha've',been u.,sed ,tosolve-this
problem. Hintfan- (1986, 1988), and, Murdock and ,non(1988; see1also 0
Murdock, 1989) have, prOpOSed a probabilistic encoding asum ption: Each
feature .of.an. :item :isencdd(stored)with -na, pobabifitV p at rfies, with

presentation timeI if not storedoit is given a neutal value (or 'inz a' variant
discussedby Shiffrin et al . 1990, replaced- ba ,rando]m ue). Met-alfe .Eich

185s'a varant in'which ,all features: of an item are .either(1i985, p,28) propo,'ses ivt' ai, I/ . ... '_ ,' I '' ..... 1 -

encoded or not (all-or-none encoding). In ,all ,these variants, both reptitions of
an item andn,,creasedstudy time-wilLimprove-storagerelative,.to-.-vanance :mi the
system, and therefore increase performance.

Shiffrin et al. (1990) discuss an alternative, way ,in, which,these models might
show a learning or repetition effect. This alternative is based on, the fact 'that
performance in these models is related to the. signal-to-noise ratio (or d'). Since
d' measures the 'ratio of mean signal strength, to the standard deviation, d' can
show an increase with repetition if aconstant is'added'to the standard deviation.
The reason for this is that the standard deviation will no longer- be completely
proportional to the mean, signal strengths It is natural to suppose that the
constant, represents activation of traces 'or trace components from lists other than
the one being tested, or from extra-experimental memory. (More generally, this
assumption may prove useful in all models because it lessens the effect of list
variables like list-length and study time in accord with the amount of extra-list
activation).

The remaining models predict performance increases with repetitions or study
time for fairly obvious reasons: storage of stronger associations in SAM or
ACT*, or weight changes that produce better encoding in the neural net models.

2.4.5 Retrieval

One of the major differences between the models discussed here' concerns the
manner in which the retrieval process produces a recalled item. In: SAM separate
traces are accessed separately, Lo the recovered informationcan -be compared to
a standard lexicon; SAM doesnt ,provide any details of this process, but simply
assumes the probability.,of successful recalI rises with the 'strength of the cuesto
image relationship. The, ACT models use simlar probabilistic 'rules. MINERVA
2 also has separate storage, but retrieves-a composite, This cOmposite could 'be
compared with the, individual stored traces, but this s€eeins usatisfactory because
recognition is also assumed to be a composite process. Hintzman (e.g. 1988)
proposes a somewhat more satisfactory 5olution in which the composite, retrieved
vector is used as a subsequent retrieval cue, the process continuing in this way
until' the' retrieved: vector comes to reiresent an unanbiguous itzm. ART also
has separate storage, and test. probes come to activate some single node in, at
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least , one ajer; this node send,2down4 apattemjof ac tion that could isel i
p~idduc €!cearecl or (ifit categrangle' Odran a s'ngleite iiode)
could be, compared to separatel~encoded 'patterseswhlere in.thleystem. ....

lem: how is -then, lld ow an unambiguo6ug recall?
TODAM .C-' M;ARMa Adthe MatridxfmodeL assume a:lex icnof sepately stored
items. to ,Vihthe retrieved- tfrace k6an becompared. Thiss0luti6 ntends to-dilute
the composite- character of these -models. The r emaiing connectionist and,
neural net models do not offercleaf Solutions for cases in which the ret eved

f traceis nOisy enough to be ambiguous. Ipiclly, a probabilistic recall rule is
adopte, based on-the mat'chofe-i'th*etrieved 'tttceto possible responses. Ift,,the
model is,fully cOmpOsite, however, it .is noit entirely clear where the comparisonm
stimuli lie.

A second' issue involves whether the -retrieval process is assumed to, be
probabilistic or not. Both AC-* And SAM aSsuine' a probabilistic retrieval
process. In these models, an-item that was not retrieved on a-first retrieval
attempt may still be retrieved if an additional attempt at retrieval is made. (In
SAM it is usually assumed, however, that at least one new cue must be used for
a Subsequent retrieval ,to have a chance at success). The other models, on the
other hand, are such that a second attempt, will''always lead to the";same result
(unless the cues are changed, or have added noise,.- see McClelland, 19??).

Finally, only a few models (namely SAM and the convolution/correlation model'
of Metcalfe and Murdok, 1981) have- been applied to extended search processes
as' in'free recall, in which the subject uses a number of different retrieval cues in'
order to maximize, recall. it might be argued that the search strategies that are
probably involved in these paradigms are not pAit of the "basic" or "elementary"
memory processes. However, such a viewpoint does not do justice to the fact that
many real-life situations do involve this type of unstructured memory retrieval.

2.4.6 Forgetting

Let usdefine forgetting as a failure to retrieve information from memory at tihi
B when it Was retrievable at an, erlier time A, 'or as a decrease in theprobabil-
ity of retrieval. There, seem- to 'be three basic ways in ,which forgetting might
occur: (1) 'a -derrease,-in 'the,4strength' of the memory trace, ie. decay; (2) an
in,,rease in competition by, other, intefering, traces (or items); and (3) a change
in the nature of the -cue between time. A and 'time B; i.e. a change in' the (futc-
tional) stimulus. There does not seem to be any diffidenCelbet*een the models
with respect to the third aspect, although not all of them have explicitly dealt
with it. Mensink and Raaijmakers (1988) have used this idea in their application
of the SAM model to interference and forgetting. In this model, part of the
forgetting was assumed to be caused by contextual changes, i.e. changes in the
contextual cues between study and test.
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M.. .R.. 2b Hit~~....... . -p ...2 a( . ..DA 9(Mu ok, 1989, p. 77)

bothd assumer tha teinfodecaytis ujpion isosubject to taI T ioDm : ti'a dibuit
into ,the 1:asic e..quao o.tess(s e Mudc,18,E.1.I huldb

n howev that decay eassumption ers. som.hat.fro.tradition

ageometric chracter. -(It should be-noted that.this assumed decay is i depen-

dent of ,the ;interferenee thatis commontl:lou.f the:,comPogite storage models,
including TODA,).

All the memory models considered'in, thischapterpdct a decreein perform-
ance due. to ,leaigotheritems, and to'.learmng other pairs of items inm.both
AB-AC and AB-CD type tasks), the only general' exception ,occurring when the
other items are rehearsed or coded jointly with, the items i' question. In general,
several mechanisms: in each model help produce interference, these mechanisms
may be, different for different tasks,(as in SAM),and the:mechanisms may differ
between models. We mention here .a few of the more interesting differences
among the models.

Most composite models 'incorporate explicit interference ,due to the superim-
posed storage assumptions. When vectors or matrices are added together, or
when a set of weights, are jointly, adjusted for each new input, the result tends- to
be degradation of the representations of each item. There are of course excep-
tions to this rule: If memory, is large enough relative to the size of the inputs,
then storage might be effectively separate (the amount of superimposition might
be minimal; -see Kanerva, 1988), or if the inputs arc orthogonal enough, or if the
system orthogonalizes or separates the inputs (e.g. Grossberg's ART models),
then interference would not be mandatedby the factor of composite storage.

The remaining sources, of forgetting are posited to arise during the course, of
retrieval (in SAM these are the only sources of forgetting). SAM assumes
summation of activations at retrieval to accomplish recognition; as a conse-
quence, extra items cause forgetting by increasing 'noise'. In MINERVA,
composition during both. recall and. recognition causes interference due to
increasing noise. One chief remaining, cause of interference is based on the
relative strength ofs storage of different items. For example,.in SAM, sampling in
recall is based on a ratio of activation strengths. Reduction in, relative strengths
of targets due to extra items, also plays. an. important role inmany of the models
under discussion, especially the ACT, models. This, factor plays a chief role in
accounting for list-length,-.fan;, and cue-overload effects.
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IC ATiONST PA IGMSI-
' In " .. .. th n ......... . .eI, ................. ft way s.,kv-they 6 "

ithis~section, the vaious, models wil by compar d n hepred c
certain.basic findingsn imemory research, boqualitatveand quantive..

3.1 Cuedrecall

Cued recall is the basic paradigm for associative memory, and the -present set,.of
models have beer formulated so that cued. recall-predictions, can be made. ACT*
and, CHARM haie -been ,appdliedmore,or lessexclusively to -cued recall data. In.
addition, ACT* ,and, SAM have been- shown to tbe-,able to acount for both
latencyas well as .accuracy data, in cued,,recall: (Anderson, 1981- Menink &
Raaijnakers, 1988).

3.1.1 List-length

All the models are capable of handling the basic list-length effect. However, in
some models (TODAM, CHARM) no distinction is made between the to be
recalled list and extra-list and extra- -experimental information. When, list-length
is predicted to, have an effect, it does so because retrieval is restricted to the
to-be-recalled list (without explanation). This seems unsatisfactory, and: the
natural way to resolve, the difficulty- would- be the adoption of some form of
contextual cuing (as is the-casewith other models).
However, whether a contextual cue is used may be less important than how it is

used. A typical multiplicative rule, for cue combination, tends to focus access
upon regions of memory in the intersection,of the sets of memory traces evoked
by each cue separately; whereas a typical additive rule tends, to access traces in
the union of these sets. Humphreys et al. (1991) argue quite convincingly for the
intersection approach, implying that "strengths" or "activations" should be acted
upon in a way functionally equivalent to multiplicat'on (as in the SAM, model,
the Matrix model, etc.) rather than addition (as in ACT*).

Parenthetically it might be noted that thL type of explanation of list-length
effects sees such effects as an example of a more general effect, i.e. that. the
efficacy of any probe cue is inversely related to the number of memory traces or
items that, are associated to that probe, cue,(which might be called the length, of
the list of associated- items).

3.1.2 Interference & forgetting.

The basic issues here are -the effects, of different types, of interference (i.e.
AB-AC vs AB-CD), mechanisms for (relative) spontaneous recovery, single-list
forgetting paradigms and whether or not some sort of decay notion is used.
ACT*, SAM, and CHARM have all been explicitly applied to such phenomena.
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Andernon,(1983#)- a#4:,Mens'nk and- RO~qmakeis _ (88):Soatsme sl
in thliaftmeeesitatev:the *umption tat-rre llci -baed,,on, both relative and

absolut hessoclatiVe. streng Reltive :stref gthasa function of , he, numbe ",and,

of study time or-the number, of presentatios of an item.. In ACT-* absolute
strength comes in through the assmptionthat trace formation is more likely as
the total study time increases. In SA , absolute strengths determine the
probability of recovering-enough information,-from the trace, to -give- the name of
the item as-aresponse.

Mensink and-Raai"makers (1988') ptresent ,a ,theoretical ,analysis of traditional
interference phenomena. :They show, thatmoder memry models such as SAM'
are able -to reconcile phenomena that- have been problematic for traditional'
interference theories. Such analyses bring out a number of tacit assumptions in
the typical verbal (i.e. non-quantitative) models that are not usually noted.

3.2 Free recall

This paradigm, is more complex than, cued recall. This is due to the fact that it
not only necessitates an exact formulation of the relation between STS/working
memory and long-term memory -but also a description of search/retrieval
strategies. Only a few of the models have explicitly-dealtwith such data. We will
briefly discuss predictions by SAM (Raaijmakers & 'Shiffrin, 1980) and an early
version of the CHARM model (Metcalfe & Murdock, 1981).

SAM assumes that contextual and interitem associations are built up as a result
of rehearsing the items in STS. A buffer-process (Atkinson & Shiffrin, 1968) is
used to model the rehearsal process. Retrieval starts by outputting any items still
in STS. Thereafter the retrieval process is. modelled as a series of retrieval
attempts either with-the context cue alone or using both context-andta previously
retrieved item as probe cues. This process continues until- the number of failed
searches reaches a specific criterion.

One of the strong points of the SAM model is that it handles with a single set of
parameter values data from lists with -large variations in presentation rate and
list length. The latter result is predicted because the search -termination criterion
is exceeded-,sooner for the. lists, relative to list length: relatively feWer
samples are made from a longer list than from a shorter list. This prediction is
characteristic of sampling-with replacement search models with a fixed stop
criterion. It also subsumes the cue-overload principle proposed by -Watkins
(1975; see also Mueller & Watkins, 1977; Watkins & Watkins, 1976). This
principle states that the. pobability of recalling any particular item decreases
with the number of:instances, associated to the- retrieval cue.
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termiiql-gof, tile, convolutiq#,cOrr t d04 , the actual' simulatldlnmodel.
does not in. fact.,use.the-mathematicaopertions of convolutibnand*-correlatioL., .In .te. .,-o:o-noneaso ao.b6Wt:to, d h . .e fistj.-tem,:.and-,bte, s.i

items and context (teatd, as a ist item).Whe.- item ,isused asa tee l
random choice is retieved perfectly-from the.stored assoiates, if any..

The -,rehearsalP process is. conceptualzed as ,a.continuous ;cuing -of'-the memory
vector with1he currently availale item. Thus, ,when an-item.is presented, it is
associated,,tO the. itemti.thattis.-: ctirr. n y,,avai!" ble,.(contex .I.at-the',,sta-Of-the :. t)

Then, the just-presented itemis used as a cue to generate .an itemt w1which it has.
been associated, and then this, it*em is used s a new cue, etc.This. continues
until- the next:-item is presented which is ,thenassociated to r the.item, that is
currently, available.

At the time of recall, the last rehearsed item is recalled and used as a cue to
generate another item; then this item is itself used as a cue, and this continues
until a certain criterion amount of time has passed without any new items being
recalled. At that point, context is reinstated as a cue, and the process begins,
anew and continues until the criterion, amount of time passes.for the second time
without any new recalls.

Each of these models predicts serial position effects. Since the SAM model is
based on the two-store framework, it should-not come as a surprise that it makes
many of the same predictions as the classic two-store model (see Atkinson &
Shiffrin, 1971; Raaijmakers & Shiffrin, 1980), and for the same reasons: primacy
is, predicted because of the cumulative rehearsal assumption, while the output
from STS leads -to a recency effect. Although, the two-store model is often
described in textbooks as having problems handling data on levels-of-processing
and recency effects, this is in fact not correct (see Raaijmakers, 1991).

The Metcalfe-Murdock model, has a quite different flavour, In. this model, the
shape of the serial-position curve is critically determined by the cues that are
available at recall. Recency is predicted because the last presented item is
recalled first and then used as a cue. This item is assumed* to be, the optimum
entry point into the end of the list. The disappearance of the recency effect by
the introduction -of a delay between, presentation and test is explained by, the
assumption that rehearsal continues during the ,delay. Hence, at the end of the
delay the currently available item will most likely be some other item than the
last item on the fist., The optimum entry point, for recall of the Jast few items is
therefore lost. This explanation seems unlikely since providing the subject with
the terminal item -fter the delay interval should reinstate the recency effect.
(Another problematic aspect is the assumption that rehearsal continues ,during
the delayfilled with arithmetic.)



-7.

26,

Priacyispredictdby, thsJdl~ea contex is,,used as a retrea u i

'the, psecond phstreall prc an ..o..x.i.early 4lw : ,re....... f
stogyassociated "with' the f irtitem. Tus, -this exlaationi 'ute similato

the typi t tore: exp pbeing, due to -stronger, traces for
the-initial i tems:(i,,hiscase'beng ,more strongly-associated to context).

One of the more important advantages of the recent Work on models of memory
is,that -t has led to :model-basedsitmulation programs for,"specific expermental
tasks. These programscan then, be used to seehow the model behavies nder
specific experimental, conditiois. This' is especialyimportant in free recall-since,this paradigm does- not-lenditself .easily toanalytic'approaches._

One'aspect of the ,data,-where this has-been proven :to.be, very- 'helpful, is in 'the
analysis of the effects of various types of cuing manipulations- of the'likelihood of
recall. We will mention, two: the (positive) effects of category cues and the
(negative) effects of 'cuing with randomly, selected, list items (the so-called
part-list cuing effect).

Raaijmakers and Shiffrin (1980) showed that typical effects of cuing with
category names- could be 'easily, predicted by' the, SAM simulation model. These
predictions do not greatly depend on the specific assumptions of SAM, (vis-a- vis
alternative models). Such analyses are however important to show that observed
effets are indeed consistent with particular theoretical frameworks.

This is even more the case in' the part-list cuing paradigm. In this paradigm
subjects are gven some randomly selected items from the list as cues for the
remaining list items. The typical finding is that such cuing leads to a slight but
unexpected' decrease in the probability of recall for the remaining items.
Raaijmakers and Shiffrin (1981)'spent a 'good deal of effort analyzing this
peculiar effect within their SAM simulation of free recall. They showed that this
counterintuitive effect was in fact predicted by the model. In addition to the
basic result, a number of related findings were predicted. These inclut, d the
number of cues, the time, at which the cues, were given, and the effect of
interpolated, learning (between, presentation and test). Raaijmakers (1991) shows'
that -the model predicts a reversal of the cuingeffect if a delayed testing pro-
cedure is'used. This prediction isindeed borneOut. This research has also shown
that it is by no means easy to intuit the predictions of a relatively simple model
such as SAM in a complicated experimental situation.

This part-list cuing effect -has also-been dealt with by Metcalfe and Murdock
(1981). However, in their Simulation it was assumed that the list cues were not
actually usedby the subject. ThiStassumption'makes it relatively easy 'to predict a
negative effect of cuing but does not make much sense :given the fact that most
subjects will expect the cues to be helpful (as did' most memory specialists). In-

addition, such an approach makes it impossible to predict a reversal of the cuing
effect in delayed cuing.
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Noteho er that !theseproblems are not due. to thO ba.sic structure.:of the,
• ~~convoluion./corrlation model (Which :was .,in:-fact put aside) but-. to the assump-

~~~~ti~hi that, are.made, concerin 1he, -,.s~bje~t's, .Sateogy, 11i ustige; ,th
predictions for free recallt tasks: critically, depend, on- the, strategy- thatis used, i'e.

onthe assumptionsthatare- made. cncerniz n the;sequencd of cues0to be used in
retrieval. ., Gronhmd, and Shif frn( 1986) exa ied theeffectsof Various retrieval
strategies on xecall from, natuarlcategori'esan-d-categgried -lists. They, showed
that, different.strategies indeed have-an effect on-recall performance. This, result
poses two problems for. any model for free recall. First, it makesit problematic
to> applyc a-sApecifc (arbitrary) version of die,modelt0, the ,data-,,ofa group of
subjects,, unless. it -can be shown' t.hat the- result of interestvsinsensitive to the
choice of -strategy orlhat-,the subjects all' use a similarstrategy. .Second,, given ,a
specification of retrieval, strategies (i.e. in terms of the sequence.of cues that are
used), the model should be able to give a quantitative account of the resulting
performance differences. Gronlund and Shiffrin (1986) show that a simple
extension of SAM could account for the observed differences.

3.3 Recognition

Most current models of memory assume that simple recognition decisions are
based on some sort of global familiarity value.. By this we mean that the familiar-
ity value is a kind, of weighted, additive combination of the activation of all items
in memory. This g'obal familiarity value is determined by the match between the
probe cues and the memory trace(s). This general type of model has been
termed the General Global Matching Model (GGMM, Humphreys et al., 1989)
or the Interactive Cue Global Matching (ICGM) model (Clark & Shiffrin, in
press). As these labels imply, such models differ from previous local matching
models in that all items in memory are involved in the match, not just the
representation of the tested item. In this section we will consider some of the
data that have been used to test these models.

3.3.1 Pair recognition

Pair recognition has been used as an experimental paradigm to test aspects of
recognition models. Basically, the issue here is the way in which associative
information is assumed to contribute to recognition decisions. In these experi-
ments the subject first studies a list of word pairs (AlB, A2B2 ...).-At test, intact
pairs (A1Bi) have to be discriminated from rearranged pairs (A-Bi), mixed (AX)
and/or from new word pairs (X).. These results may be compared to those
obtained in single item recognition (A1 vs. X). and/or cued, recognition (A vs.
AiX where only thqe. second item has to be judged; see Clark & Shiffrin, in press).
Humphreys et al. (1989) show that -all. extant versions of the global matching
model (SAM, MINERVA 2, Matrix, and TODAM) lead to similar. equations for
the mean matching strengths. This would seem to imply that it will be difficult to
differentiate between these models. However, predictions for d' depend not only
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the mean seng but also onthe variances. Furermore, m my-p. ossible
dis"tini~~sV tweenh the: models if oe also tae the predietions for single :item

recognitionand -cued recognitioninto:account.

Clark and-Shiffrn' (in press) examined,the, predictionsfor aff types of recognition
tests.They 'show that the models'diffef with"-respect to whether they predict an
advantage for cued. recognition, compared-tosingle -item recognition The -results
of their experiments werereasonably well prediced by TODAM and SAM, with
TODAM ,producing the best fit. MINERVA2 and-the. Matrixmodel didnot fit
the, data well. One-problem with such d&A howeveris thatit might, very weU-be
the case, that- subjects -make, use of 'recall -processes iN, additiont0"global match-
ing. That is,-the lodgi of the models allowssubject, to, suppleient global
matching with -recall.

Gronlund and Ratcliff (1989) pointed to another, problem for global matching
models. They examined the time-cOurse, of the availability of, item and
associative information using a response signal procedure (Reed, 1973, 1976;
Dosher, 1976). In this procedure, a recognition decision must be made at one of
several pre-defined times after the onset of the test stimulus. With this pro-
cedure it is possible to determine the growth of accuracy as a function of
processing time. Gronlund and Ratcliff showed that, item information becomes
available sooner than associative information. This poses a problem for global
matching models since these treat these two types of information as inseparable.
To accommodate the results, separate contributions of item and associative
information are required, possibly by distinguishing between concurrent and
compound usage of cues (see Gronlund & Ratcliff, 1989). That is, it might be
assumed that memory is probed in parallel with an interactive, compound cue
and with the item cues separately. As an alternative, it might be the case that
pair images are sometimes stored, and that the time course of pair-image activa-
tion differs from that of single-item image activation.

3.3.2 List-length vs list-strength

Recent research by Ratcliff, Clark and Shiffrin (1990) has focussed on the effects
of the strength of other list items on the recall and recognition of target items.
This so-called "list-strength effect" concerns the effects of strengthening (or
weakening) some list items upon memory for other list' items. Ratcliff et al.
(1990) showed that strengthening some items in the list decreases recall of the
remaining list items but has no or even a positive effect on recognition per-
formance. This contrasts with the list-length effect: adding items to a list
decreases both recall and recognition performance. Thus, the number of irrel-
evant items, but not their strength, affects recognition. This is true not only for
strength variations due to amount of study time but also for variations due to
spaced repetitions.
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s peculiar result ,should -have a number of' ensequekdS for models for,
recogton. In particular it will b nec ary 'to asume a"stuctural difference.

item. Shiffin et l. (190) shwed tat -,current memory moesidedcIn
predict both the presence of a list-length seffect and the absence -(r'reversal). of
a list-strength effect.

Shiffrmn et -al.,(,1990),also ,ivestigated whether the vaious models would; allow
modification so as-tobe able to ,predictsthese resultA. This,-does~not seem to :be
possible for those models that assume that items are -stored;in one composite
memory trace. Even considering regni0i- only, 'these models. cannotitpedict
both-at :poSitive -ist-leigth effect and, an absent .or negative liSt-Strength effect
when sttrength variations are due to spaced repetitions. :Models-such a&'SAM and
MINERVA 2 that-assume separate storage are in principle better equipped to
handle these results although they too Will have to be modified to,'be able to
predict negative list-strength effects.

Shiffrin et al. (1990) show that:a modification of SAM can handle these results.
In this modified SAM model it Is assumed that different items are stored in
separate traces but repetitions, of an item -within a. list are stored, in, a single
memory trace.. Second, the variance of activation of -each separate trace, when
the cue item is unrelated 'to the item(s) -encoded in the trace, is, constant
regardless of the strength of the trace. This latter assumption is inconsistent with
previous formulations of SAM but, is defended using a differentiation argument:
the better the image is encoded, the clearer are the differences between it and
the test item, and hence the lower the activation. In. this way, a constant or even
decreasing variance may be,predicted, depending on the weighting of context
and item cues.

A crucial aspect of this explanation is that repetitions of an item are assumed to
be. stored in a single memory image. To evaluate it. further, Murnane and
Shiffrin (1991) tested whether a~reversal of the list-strength effet in recognition
occurs if repetitions are presented in such a way that they a, _ likely to be
encoded in saparate images. They found that repetitions of words in different
sentences produced a list-strength effect whereas repetitions of entire sentences
did not. This demonstrates that the -nature of the encoding of a repeated item is

a crucial factor.

3.4 Evaluating the models

In this chapter we hav5 shown that current mathematical models of. memory are
capable of handling many classical and new findings in recall and recognition.
We suggest that model, of this type are superior to verbally stated theories of
memory. Arguments in favour of the modelling approach include,- (1) the -ability
to predict the size (and not just the direction) of the effect of experimental
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factors,(2) the abilityto predict ;the ;effect of-combinations, 'of experimentl
factor,()th blt t xmn th cm inedreult obftheoretical assmptions,

(4)th fcttht ' odk~spdalyin~te~or o~asiulatio program a be,
used !to "expeiment",with, processinmgor istrategy ass tions to :,determie the"

crucit vyariabe thtudri ie rditoad()tefc hat models
oftendemonstrate thelimitations: ofmore intuitivreasoning.,

Suchy a, conclsidon: is'nhw6ver .ofteni c'nticd on,,, th#e:ground:that,.kgieral' ;models

Of' memory, 0fthe type, discussed.n, tchapterTare too versatile. That- is, the,
models usually Ic rae relatvly large: u op rcSean'prm¢

ters, that, seemi to _nable' temw tOrddit. almost. antype.,of e - r slt.,,In
addition, it isoften difficult to:,intuit what, a, specific modeliwillpredi1ct'n a given
situation.. This: contrasts with the simplicity of lypical verbal, non-quantitative
explanations of memory ,phenomena.j.It will be; -argued in this:section that -this
difficulty is often more apparent'thanreal.

First, quantitative models also make qualitative predictions that do not depend
on -parameter values. That- is, in order. .oevaluate ,a model, ability to predict
, data, one should not only,examinethe-phenomena that it cani predict but, also

' • take into, account Whether it makes :strong, parameter-free. predictions about
results tha should not occur (no matter what parameter values are, used).
Second, if ashulb psrediction depndsonthe specific'parameter values that
are used, it, should be --possible -to arrange the experimental situation in such a
way that that particular result is, reversed. Third, the argument may also be
turned around: if the ability ofra model to predict, a ,particular phenomenon turns
out to depend on parameter value, one. may well ask whether a corresponding
qualitative explanation is in fact logically sufficient. Finally, some results are
indeed complex (i.e. dependent on a number of interacting processes) whether
we like it or not. In fact, one advantage of quantitative models of the type dis-
cussed in this chapter is that theymay be used to see whether particular -"Verbal"
explanations indeed- hold true when tested in the context of a comprehensive
model of human memory. The' next sections will focus on specific aspects that
are involved-in this discussion.

3.4.1 Number ofparameters

Current quantitative models of memory frequently incorporate a dozen or so
parameters. These parameters reflect both structural aspects of the memory
system (decay rates, processing times) as well as task-related aspects (weighting
of cues, stopping criteria, decision criteria). When.a,.model is, fitted .to a set of
data, these parameters usually have to be estimated from those data, that is, they
are given values so as to Optimize ,the fit to the data. Although this procedure
can be rigourously defended on statistical grounds, it does seem to many to
involve, a bit of cheating; It is .probably for this reason that the relatively large
number of parameters in current models, is frowned upon.



v, ane w t u oeis ue.Th atAthe qualitie natuire of the rdi~ectionsdoes not, depend onte exact paameter

vaues. hs, eg o 0the simutions s e' rarelrfrmeuingea pq U et ofn
parametervaluesi (sieel tcale &f Murdock -1981;Meng ifymesin ,o amaer
1988mintzormat m 19) ai th parmeer valuesdo revere a
particulareiction, eTtMrc evien ce shd b.qu taie .coerngths

reictio (e ewg. the eito of treesl o hexp at lsci g e ffca

I .. ubof e otexstrenghprmtrsnteSA oe,-aimle

Mother itis, th fnon-q uantitative model s l h includeoarametdrs,
that is, degrees ofnumf ered , alhough th iarely realie To put this 'in

iathe awa moet-lexp aons tor memory plihomena by modes ofmemo
might beferimulatedina qualitativegm y. jAn thisiwa there( 8, ouldnte ay
basicdifferenc betwe en quan titative-and qualitative -models. he, -te
resulting theori~es -would-have lost~lmost-oftheir explanatory ,,power.,

3.4t2 ue t of processesme f

Most, of thez difficulties With well-specified quantitative models hav-to-do with
theW:relatively large nuber f ro onessers- hi nae -usually- ispoposed. -hei is
especially the case -when models, attempt to be applicable to a large number of
different experimental paradigms. As emphaszed -by. Smith (198), there is a
tradeoff between- generality anFdurth implicity -of 'the oretical. models.. The. proble
here is -that-due tot theiumbeyof processes and the number of-parameters -(or
quantitative- relations) involved-in complex memory models, it is often, not
possible -to make -Predict ions- about-the -behaviouri of the model except through
quantitative; simulationse.c

We give an example (drawn from own experience) to illustratetis point.. When
the SAM model was first applied to the part-list cuing paradigm (see
Raaijmakers-& Shiffiin; 1981), iwas not: hat all clear Whether it would or would
not predict this effect. Furthermore,_evdn afterthe prediction tuned out to be
successful,, it was not immediately clear (to say the least)- what-factrs, in- -the
model were causing it.

What -this ishoWs is tha-it is not- possible to make -intuitive predictionis concerning
the behaviour that a model will show under specific task conditions. However, i
should'be evident that a similar problem holds for "verbal" theories of -memory.
In such qualitative~accounts .it- is ,not- clear -what-the- boundary -conditions are that
apply ,to, a partcular prediction. The lesson.,that can- be drawn herejis that .much
more effort shouldbe invested in heoretical analyses--of the. factors involved in
Predicting -empirical phenomena;, Such analyses should- focus, -on-,the, role -ofeach
of thepropose processes-in the explanation:of a particular -phenomenon.



iv mnnrthere iis a tenec in4cen or o etrict' h aaysst
qualitative ,pedictio nsthatis;,one analyzes onlywheter a model prdicts the
general direction ofaneffect, 4ather. than te d rexact mgniude. In cOntrastt the
tradid tio fAhe 106Ot-andi 497Q,0 _ty 'ica goodnes-fft~esrssc ste

preseiits aormili model ofmemory.

This, poses, aproble6m.On-the one hand, tcan be defended thatone; does not
wantto focus:,tp, SpecifiIy, d0nth:e exact numericaldetails of oreparticular
'experiment, ,on ,the, other -haid ,it Would be- desirable,,to at least look at the
relative magnitude of a- particul0,: effect ,(relative ,to ,,other predicted effects).
That is, suppose that there are two pheiomena of interest: Effect A and Effect
B, where A is alargeeffect and Ba small, (butconsistent) one tIt is conceivable
that a model would be ableto predict both Aand B in a qualitative manner but
that it would- always;predicteither, A .and B:both small or A and- B both large.
Suchiai "misfit ",would .ot be detected if the analysis-focuses onlyontheqUalitat-
ive aspects.

Fortunately most presentations of'formal models for memory employ a strategy
thatis-in'between- thesetwo extremes. The typical approach'is to use a- single set,
of parameters to examine 'aset-,of data (or. datapatterns) thatis ,representative
of empirical-findings. Although ,none of the actual, data is really fitted in 'the
traditional sense, the use of a single set of parameters makes, it.possible to-verify
that the model makes predictions that are in the right ballpark in terms of
relative effect:sizes.

Hence, we may distinguish ;between three degrees of comparing the model to
actual data: qualitative,,;quantitative, and what might:be called semi-quantitative
analysis. The first'involves only the direction of a difference between conditions;
the second involves a direct comparison between the predicted ,and observed
data using a goodness-of-fit measure; finally, the third does not involve a
goodness-of-fitmeasure but. does look at the sizes of the: predicted and .,observed
effects.

Although-'real quantitative ffis- remain az desirable feature, it might be ;argued
thatthe'proper approach is tofirst: aim for a-semi-quantitative prediction of the
data. In this phase,,,the 'emphasis is on. showing 'that a model cai deal with-a
variety of findings from different task paradigms.. At. some point, a number of
promising models will have, been. developed., At that stage, the time. seems to? be
ripe for quantitative tests in which several models may be compared in terms of
goodness-of-fit. We believe that the demonstrated potential of current models of
memory justifies the expectation that future work in this area will involve more
comparative, quantitative testing.
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-ute recently, JOhn Anderson (990;, see ,sb Anderson. &
... .... ; .... , &.• Miison 018 ) has

proposed a model-that attempts,- ina sense, to omeldf smeof-tebest-,fetures, of

'process models -vs. genera, ebal,.-desiptiveodels). His'Ratinal' model

'bypasses :detailsof: re.presentation an d ,pross :.to the etest ~possible,-degre.e,

and instead :is aimd at the:generalproposi6inthatmemoryis, rganized soas
tOsolve thememorfe'problem" ian opt'mm fashionu Iiany.,given,'retrieval:
situation, it ,is asumed that the eve ' stord in memory eachhave a number

assigned to them representing theirprobability of being relevant (cnta g the
desir'ed information). It -is assumed, that these, events! arese arched i,. order ,of
their relevance, either,,until ai retrieval .occurs o,(r a stopping criterion is reached.
The probabilities are based on two multiplicative fact6rs: ihe past.history of an
event's 'usefulness .(independent, of '-the cues used to probe memory), ,and the
likelihoods of relevance, associated with the cues. :So.,far-on Wthe. batest hints of
applications to memory paradigms ,are available. It is interesting,, that the model
operates at, a very abstract level, and .yet ,offers .quantitative predictions for
certain phenomena. Although initial results are intriguing, it is. far too 'early to
assess. the long, run usefulness of the approach.
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